Table of contents

1. INTRODUCTION .. 3
 1.1 Technology .. 3
 1.2 Data analysis .. 3

2. PERFORMANCE CHARACTERISTICS ... 4
 2.1 Sample types ... 4
 2.2 Analytical Measurement ... 4
 Detection limit ... 4
 Measuring ranges ... 4
 High dose hook effect ... 4
 2.3 Precision ... 8
 Repeatability ... 8
 Reproducibility ... 8
 2.4 Analytical Specificity ... 8
 Endogenous interference ... 8
 2.5 Scalability ... 10

3. REFERENCES .. 11

TECHNICAL SUPPORT
For technical support, please contact us at support@olink.com or +46 18 444 3970
1. Introduction

Proseek® Multiplex CVD I 96×96 is a reagent kit measuring 92 cardiovascular disease related human protein biomarkers simultaneously in plasma samples. The analytical performance of the product has been carefully validated and the results are presented below.

1.1 TECHNOLOGY
The Proseek reagents are based on PEA, a Proximity Extension Assay technology, where 92 oligonucleotide labeled antibody probe pairs are allowed to bind to their respective target present in the sample. A PCR reporter sequence is formed by a proximity dependent DNA polymerization event and is subsequently detected and quantified using real-time PCR. The assay is performed in a homogeneous 96-well format without any need for washing steps, see Figure 1.

1.2 DATA ANALYSIS
Data analysis was performed by employing a pre-processing normalization procedure. For each data point, delta Cq (dCq) values were obtained by subtracting the value for the Extension control, thus normalizing each sample for technical variation within one run. Normalization between runs is then performed by subtraction of the Interplate Control (IPC) for each assay. In the final step of the pre-processing procedure the values are set relative to a fixed background level determined by Olink. The generated Normalized Protein Expression (NPX) unit is on a log2 scale where a larger number represents a higher protein level in the sample, typically with the background level at around zero, although it might differ between runs. Linearization of data is performed by the mathematical operation 2^{NPX}. Statistical analyses, e.g. coefficient of variation (CV) calculations were performed on linearized values.

Fig 1. Proseek Multiplex assay procedure employs three core steps: Incubation, Extension and Detection. High throughput real-time qPCR is performed by using the Fluidigm® Biomark™ or Fluidigm® Biomark™ HD systems.
2. Performance characteristics

2.1 SAMPLE TYPES
The ability to use different sample types was evaluated with the Proseek Multiplex CVD I 96×96 by collecting matched ethylenediaminetetraacetic acid (EDTA), acid citrate dextrose (ACD), and heparin plasma samples from 5 individuals. Table 1 shows signal to background values for each sample type and assay, as well as relative percentage differences compared to EDTA plasma. The results indicated that EDTA plasma is a suitable sample type for all assays. Variations observed between responses in heparin and citrate plasma, as compared to EDTA plasma, was generally small, and most of the assays will therefore function without limitation in these sample types.

2.2 ANALYTICAL MEASUREMENT

DETECTION LIMIT
Limit of detection (LOD) was defined as 3 standard deviations above background, and reported in pg/mL for 88 proteins out of 92, for which recombinant antigen was available, see Figure 2 and Table 1.

MEASURING RANGES
The analytical measuring range was defined by the lower limit of quantification (LLOQ) and upper limit of quantification (ULOQ) and reported in pg/mL. Quantification limits of LLOQ and ULOQ were calculated with the following trueness and precision criteria; relative error ≤ 30% and CV ≤ 30%, of back-calculated values, respectively. Measuring ranges were reported in order of log10. See Figure 2 and Table 1.

Calibrator curves were determined for 88 protein biomarkers simultaneously in multiplex format. Two protein biomarkers lacked recombinant antigens and two were non-purified preparations. Representative assays with their analytical data are exemplified in Figure 2 and the distribution of their corresponding measuring range per assay is shown in Figure 3. Separate calibrator curves established for each assay may be viewed at www.olink.com/products/proseek-multiplex/proseek-multiplex-cvd-i.

HIGH DOSE HOOK EFFECT
A high dose hook effect is a state of antigen excess relative to the reagent antibodies resulting in falsely lower values. If undetected, a significantly lower value will be reported which can lead to misinterpretation of results. Therefore, the high dose hook effect was determined for each analyte, here reported in pg/mL, see Figure 2 and Table 1.

Fig 2. Calibrator curves from 4 representative assays and their corresponding analytical measurement data.
Fig 3. Distribution of analytical measuring range, defined by the limits of quantification LLOQ-ULOQ, for 88 out of 92 analytes.
<table>
<thead>
<tr>
<th>Target</th>
<th>UniProt No</th>
<th>Signal-to-background (2^20^) (%)</th>
<th>Relative 2^20^ to EDTA plasma (%)</th>
<th>LLOQ pg/mL</th>
<th>Log10</th>
<th>Precision (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenomedullin</td>
<td>P03182</td>
<td>92 112 78</td>
<td>82% 69%</td>
<td>977</td>
<td>1.8</td>
<td>10% 18%</td>
</tr>
<tr>
<td>Agouti-related protein</td>
<td>D00253</td>
<td>25 22 28</td>
<td>114% 127%</td>
<td>244</td>
<td>2.7</td>
<td>7% 12%</td>
</tr>
<tr>
<td>Angiopoietin-1 receptor</td>
<td>Q07263</td>
<td>100 114 105</td>
<td>88% 92%</td>
<td>61</td>
<td>3.3</td>
<td>8% 12%</td>
</tr>
<tr>
<td>Beta nerve growth factor</td>
<td>P01138</td>
<td>2 2 2</td>
<td>102% 81%</td>
<td>2</td>
<td>4.2</td>
<td>8% 25%</td>
</tr>
<tr>
<td>Caspase-8</td>
<td>D14790</td>
<td>2 2 2</td>
<td>84% 112%</td>
<td>2</td>
<td>4.5</td>
<td>7% 21%</td>
</tr>
<tr>
<td>Catechol D</td>
<td>P07339</td>
<td>211 230 203</td>
<td>92% 88%</td>
<td>9766</td>
<td>2.1</td>
<td>8% 16%</td>
</tr>
<tr>
<td>Catepsin L1</td>
<td>P07711</td>
<td>65 77 62</td>
<td>83% 80%</td>
<td>244</td>
<td>2.7</td>
<td>7% 14%</td>
</tr>
<tr>
<td>C-C motif chemokine 3</td>
<td>P10147</td>
<td>3 5 4</td>
<td>74% 79%</td>
<td>0.24</td>
<td>3.3</td>
<td>10% 18%</td>
</tr>
<tr>
<td>C-C motif chemokine 4</td>
<td>P13236</td>
<td>257 452 385</td>
<td>57% 85%</td>
<td>0.95</td>
<td>4.8</td>
<td>8% 12%</td>
</tr>
<tr>
<td>C-C motif chemokine 20</td>
<td>P78556</td>
<td>146 154 110</td>
<td>95% 72%</td>
<td>4</td>
<td>3.6</td>
<td>8% 9%</td>
</tr>
<tr>
<td>CD40 ligand</td>
<td>P29865</td>
<td>54 172 391</td>
<td>31% 227%</td>
<td>8</td>
<td>3.0</td>
<td>8% 16%</td>
</tr>
<tr>
<td>Chitinase-3-like protein 1</td>
<td>P36222</td>
<td>46 53 48</td>
<td>88% 91%</td>
<td>488</td>
<td>2.7</td>
<td>11% 15%</td>
</tr>
<tr>
<td>C-X-C motif chemokine 1</td>
<td>P93431</td>
<td>67 208 350</td>
<td>32% 169%</td>
<td>15</td>
<td>3.0</td>
<td>6% 13%</td>
</tr>
<tr>
<td>C-X-C motif chemokine 6</td>
<td>P8110</td>
<td>83 263 636</td>
<td>31% 238%</td>
<td>61</td>
<td>3.7</td>
<td>8% 12%</td>
</tr>
<tr>
<td>C-X-C motif chemokine 16</td>
<td>Q6H2A7</td>
<td>41 46 39</td>
<td>90% 87%</td>
<td>488</td>
<td>2.4</td>
<td>10% 14%</td>
</tr>
<tr>
<td>Cystatin-B</td>
<td>P04900</td>
<td>39 55 41</td>
<td>71% 74%</td>
<td>488</td>
<td>2.7</td>
<td>8% 13%</td>
</tr>
<tr>
<td>Dickkopf-related protein 1</td>
<td>Q49067</td>
<td>52 147 96</td>
<td>36% 65%</td>
<td>122</td>
<td>3.0</td>
<td>8% 15%</td>
</tr>
<tr>
<td>Endothelial cell-specific molecule 1</td>
<td>Q9M390</td>
<td>5 8 5</td>
<td>65% 57%</td>
<td>244</td>
<td>2.7</td>
<td>9% 16%</td>
</tr>
<tr>
<td>Eosinophil cationic protein</td>
<td>P12724</td>
<td>23 36 45</td>
<td>63% 124%</td>
<td>488</td>
<td>1.5</td>
<td>5% 22%</td>
</tr>
<tr>
<td>Epidermal growth factor</td>
<td>P01133</td>
<td>23 81 130</td>
<td>29% 160%</td>
<td>488</td>
<td>3.3</td>
<td>5% 9%</td>
</tr>
<tr>
<td>E-selectin</td>
<td>P15851</td>
<td>86 109 86</td>
<td>79% 78%</td>
<td>244</td>
<td>3.0</td>
<td>9% 13%</td>
</tr>
<tr>
<td>Fatty acid-binding protein, adipocyte</td>
<td>P15900</td>
<td>11 13 13</td>
<td>82% 82%</td>
<td>977</td>
<td>2.1</td>
<td>12% 14%</td>
</tr>
<tr>
<td>Fibronectin growth factor 23</td>
<td>Q92649</td>
<td>58 72 61</td>
<td>81% 85%</td>
<td>122</td>
<td>2.1</td>
<td>9% 14%</td>
</tr>
<tr>
<td>Follistatin</td>
<td>P19883</td>
<td>22 31 9</td>
<td>70% 28%</td>
<td>977</td>
<td>3.0</td>
<td>10% 13%</td>
</tr>
<tr>
<td>Fractalkine</td>
<td>P78423</td>
<td>36 44 39</td>
<td>82% 87%</td>
<td>15</td>
<td>3.6</td>
<td>9% 14%</td>
</tr>
<tr>
<td>Galanin peptides</td>
<td>P22466</td>
<td>75 94 80</td>
<td>80% 85%</td>
<td>488</td>
<td>3.3</td>
<td>9% 17%</td>
</tr>
<tr>
<td>Galectin-3</td>
<td>P17031</td>
<td>49 57 50</td>
<td>87% 87%</td>
<td>3906</td>
<td>2.1</td>
<td>9% 12%</td>
</tr>
<tr>
<td>Growth hormone</td>
<td>P01241</td>
<td>366 385 346</td>
<td>95% 90%</td>
<td>0.95</td>
<td>3.9</td>
<td>5% 14%</td>
</tr>
<tr>
<td>Growth/differentiation factor 15</td>
<td>Q99898</td>
<td>325 382 298</td>
<td>85% 78%</td>
<td>8</td>
<td>3.6</td>
<td>9% 11%</td>
</tr>
<tr>
<td>Heat shock 27 kDa protein</td>
<td>P04782</td>
<td>8 20 7</td>
<td>40% 35%</td>
<td>3910</td>
<td>1.8</td>
<td>9% 13%</td>
</tr>
<tr>
<td>Heparin-binding EGF-like growth factor</td>
<td>P00075</td>
<td>57 93 44</td>
<td>62% 48%</td>
<td>2</td>
<td>3.6</td>
<td>5% 14%</td>
</tr>
<tr>
<td>Hepatocyte growth factor</td>
<td>P14210</td>
<td>129 184 107</td>
<td>70% 58%</td>
<td>31</td>
<td>3.3</td>
<td>7% 12%</td>
</tr>
<tr>
<td>Interleukin-1 receptor antagonist protein</td>
<td>P19510</td>
<td>28 37 37</td>
<td>76% 100%</td>
<td>4</td>
<td>2.7</td>
<td>8% 16%</td>
</tr>
<tr>
<td>Interleukin-4</td>
<td>P05112</td>
<td>NR NR NR</td>
<td>NR NR</td>
<td>0.95</td>
<td>4.2</td>
<td>5% 11%</td>
</tr>
<tr>
<td>Interleukin-6</td>
<td>P05231</td>
<td>118 125 123</td>
<td>94% 98%</td>
<td>0.06</td>
<td>4.8</td>
<td>8% 10%</td>
</tr>
<tr>
<td>Interleukin-6 receptor subunit alpha</td>
<td>P08867</td>
<td>97 107 93</td>
<td>91% 87%</td>
<td>488</td>
<td>3.0</td>
<td>8% 14%</td>
</tr>
<tr>
<td>Interleukin-8</td>
<td>P10145</td>
<td>37 58 60</td>
<td>65% 103%</td>
<td>0.12</td>
<td>4.5</td>
<td>8% 12%</td>
</tr>
<tr>
<td>Interleukin-16</td>
<td>Q14050</td>
<td>30 34 34</td>
<td>90% 100%</td>
<td>15</td>
<td>3.0</td>
<td>5% 11%</td>
</tr>
<tr>
<td>Interleukin-18</td>
<td>Q14116</td>
<td>843 942 842</td>
<td>89% 89%</td>
<td>0.24</td>
<td>5.1</td>
<td>8% 12%</td>
</tr>
<tr>
<td>Interleukin-27</td>
<td>Q9N9V9</td>
<td>10 9 6</td>
<td>109% 67%</td>
<td>122</td>
<td>2.7</td>
<td>8% 19%</td>
</tr>
<tr>
<td>Kallikrein-6</td>
<td>Q92676</td>
<td>97 115 95</td>
<td>84% 82%</td>
<td>8</td>
<td>3.9</td>
<td>11% 22%</td>
</tr>
<tr>
<td>Kallikrein-11</td>
<td>Q8L5K7</td>
<td>33 36 35</td>
<td>91% 97%</td>
<td>8</td>
<td>3.3</td>
<td>9% 19%</td>
</tr>
<tr>
<td>Lectin-like oxidized LDL receptor 1</td>
<td>P70390</td>
<td>42 41 88</td>
<td>104% 216%</td>
<td>8</td>
<td>3.3</td>
<td>5% 12%</td>
</tr>
<tr>
<td>Leptin</td>
<td>P41159</td>
<td>16 16 18</td>
<td>100% 114%</td>
<td>488</td>
<td>2.1</td>
<td>8% 12%</td>
</tr>
<tr>
<td>Macrophage colony-stimulating factor 1</td>
<td>P09603</td>
<td>505 546 523</td>
<td>92% 96%</td>
<td>0.12</td>
<td>4.8</td>
<td>7% 12%</td>
</tr>
<tr>
<td>Matrix metalloproteinase-1</td>
<td>P03566</td>
<td>7 37 24</td>
<td>18% 64%</td>
<td>4</td>
<td>3.9</td>
<td>5% 31%</td>
</tr>
<tr>
<td>Target</td>
<td>UniProt No</td>
<td>Signal-to-background (2^(-ΔCt))</td>
<td>Analytical measurement</td>
<td>Precision</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>---------------------------------</td>
<td>------------------------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix metalloproteinase-3</td>
<td>P08554</td>
<td>3 4 3</td>
<td>LOD 3910</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix metalloproteinase-7</td>
<td>P08237</td>
<td>163 17 154</td>
<td>LOD 3140</td>
<td>11%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix metalloproteinase-10</td>
<td>P08238</td>
<td>111 111 110</td>
<td>LOD 4 4 3125</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix metalloproteinase-12</td>
<td>P99890</td>
<td>233 164 199</td>
<td>LOD 8 8 12500</td>
<td>9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melusin</td>
<td>Q6K9P2</td>
<td>NR 8 NR</td>
<td>LOD 122 12500</td>
<td>13%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Membrane-bound aminopeptidase P</td>
<td>D43895</td>
<td>9 12 9</td>
<td>LOD 9766</td>
<td>13%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monocyte chemotactic protein 1</td>
<td>P13500</td>
<td>42 46 33</td>
<td>LOD 2 4 1950</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myeloperoxidase</td>
<td>P05164</td>
<td>14 15 15</td>
<td>LOD 488 488 25000</td>
<td>5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myoglobin</td>
<td>P02144</td>
<td>41 48 41</td>
<td>LOD 20 25000</td>
<td>10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natriuretic peptides B</td>
<td>P16880</td>
<td>NR NR NR</td>
<td>LOD 10 25000</td>
<td>10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NF-kappa B essential modulator</td>
<td>Q8Y9E9</td>
<td>9 14 7</td>
<td>LOD 20 20000</td>
<td>8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-terminal pro-B-type natriuretic peptide</td>
<td>D00300</td>
<td>1314 1470 1094</td>
<td>LOD 0.95 9.5 62500</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osteoprotegerin</td>
<td>Q80W67</td>
<td>43 53 46</td>
<td>LOD 0.83 62500</td>
<td>8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovarian cancer-related tumor marker CA 125</td>
<td>Q13219</td>
<td>4 6 NR</td>
<td>LOD 7866</td>
<td>11%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pappalytin</td>
<td>G13165</td>
<td>45 33 45</td>
<td>LOD 20 244 15630</td>
<td>8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentraxin-related protein PTX3</td>
<td>P26022</td>
<td>NR 2 NR</td>
<td>LOD 244 244 62500</td>
<td>8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placenta growth factor</td>
<td>P49783</td>
<td>164 207 151</td>
<td>LOD 0.48 2 31250</td>
<td>8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platelet endothelial cell adhesion molecule</td>
<td>P16284</td>
<td>78 94 74</td>
<td>LOD 244 244 62500</td>
<td>8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platelet-derived growth factor subunit B</td>
<td>P01127</td>
<td>30 237 132</td>
<td>LOD 244 244 62500</td>
<td>9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prostaticin</td>
<td>P10336</td>
<td>21 23 18</td>
<td>LOD 3906 7812</td>
<td>9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein S100-A12</td>
<td>P80311</td>
<td>69 43 88</td>
<td>LOD 244 20000</td>
<td>8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteinase-activated receptor 1</td>
<td>P25116</td>
<td>153 193 201</td>
<td>LOD 244 20000</td>
<td>8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro-alpha-1 antithrombin-protein kinase Snc</td>
<td>P12331</td>
<td>96 152 68</td>
<td>LOD 76 76 78125</td>
<td>4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-selectin glycoprotein ligand 1</td>
<td>Q14242</td>
<td>2 2 1</td>
<td>LOD 61 61 62500</td>
<td>8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receptor for advanced glycosylation end products</td>
<td>G15109</td>
<td>25 28 13</td>
<td>LOD 15 31 62500</td>
<td>8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renin</td>
<td>P00797</td>
<td>117 134 134</td>
<td>LOD 15 31 62500</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistin</td>
<td>Q89I08</td>
<td>188 235 178</td>
<td>LOD 122 244 25000</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPR2-like protein</td>
<td>Q8XJ6</td>
<td>3 12 3</td>
<td>LOD 122 244 25000</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spondin-1</td>
<td>P39900</td>
<td>25 32 16</td>
<td>LOD 3906 3906 400000</td>
<td>10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST2 protein</td>
<td>Q01638</td>
<td>14 17 13</td>
<td>LOD 122 12500</td>
<td>10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stem cell factor</td>
<td>P21583</td>
<td>238 256 243</td>
<td>LOD 0.12 0.12 7810</td>
<td>6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrombomodulin</td>
<td>P70244</td>
<td>1032 1125 1040</td>
<td>LOD 8 15 7810</td>
<td>6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIM-1</td>
<td>Q9D042</td>
<td>36 40 36</td>
<td>LOD 8 8 3125 62500</td>
<td>10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tissue factor</td>
<td>P13726</td>
<td>60 70 64</td>
<td>LOD 0.06 0.12 7810</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tissue-type plasminogen-activator</td>
<td>P00750</td>
<td>355 293 106</td>
<td>LOD 244 244 500000</td>
<td>9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-related activation-induced cytokine</td>
<td>D14788</td>
<td>29 34 29</td>
<td>LOD 15 15 12500</td>
<td>9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-related apoptosis-inducing ligand</td>
<td>P50591</td>
<td>710 762 678</td>
<td>LOD 4 4 31250</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-related apoptosis-inducing ligand 2</td>
<td>D14763</td>
<td>4 4 3</td>
<td>LOD 8 8 3125 62500</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor necrosis factor 1</td>
<td>P19438</td>
<td>8469 9172 8775</td>
<td>LOD 2 4 31250</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor necrosis factor 2</td>
<td>P20332</td>
<td>25 30 26</td>
<td>LOD 488 488 250000</td>
<td>9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor necrosis factor receptor superfamily 5</td>
<td>P25942</td>
<td>517 583 541</td>
<td>LOD 0.24 0.48 15630</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor necrosis factor receptor superfamily 6</td>
<td>P25445</td>
<td>156 182 157</td>
<td>LOD 31 31 250000</td>
<td>8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor necrosis factor ligand superfamily 14</td>
<td>D43557</td>
<td>8 11 15</td>
<td>LOD 2 2 31250</td>
<td>8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unkinase plasminogen activator surface receptor</td>
<td>Q03405</td>
<td>1435 1612 1516</td>
<td>LOD 0.24 0.24 15630</td>
<td>8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vascular endothelial growth factor A</td>
<td>P15682</td>
<td>1517 2491 1918</td>
<td>LOD 61 61 62500</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vascular endothelial growth factor D</td>
<td>D43915</td>
<td>128 128 142</td>
<td>LOD 61 61 62500</td>
<td>7%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample types

- EDTA plasma

Analytical measurement

<table>
<thead>
<tr>
<th>LOD</th>
<th>LLOQ</th>
<th>ULLOQ</th>
<th>Hook</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>3910</td>
<td>3910</td>
<td>250000</td>
<td>25000</td>
<td>1.8</td>
</tr>
<tr>
<td>31</td>
<td>61</td>
<td>62500</td>
<td>12500</td>
<td>3.0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>31250</td>
<td>31250</td>
<td>3.9</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>12500</td>
<td>25000</td>
<td>4.2</td>
</tr>
<tr>
<td>122</td>
<td>12500</td>
<td>25000</td>
<td>2.1</td>
<td>1.3</td>
</tr>
<tr>
<td>2</td>
<td>1950</td>
<td>1950</td>
<td>2.7</td>
<td>7%</td>
</tr>
<tr>
<td>488</td>
<td>25000</td>
<td>25000</td>
<td>2.7</td>
<td>5%</td>
</tr>
<tr>
<td>20</td>
<td>25000</td>
<td>25000</td>
<td>2.4</td>
<td>9%</td>
</tr>
<tr>
<td>250000</td>
<td></td>
<td></td>
<td></td>
<td>7.5%</td>
</tr>
<tr>
<td>10000</td>
<td>128</td>
<td>130</td>
<td>125</td>
<td>3.9</td>
</tr>
<tr>
<td>122</td>
<td>12500</td>
<td>25000</td>
<td>2.1</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Precision

- Intra-assay
- Inter-assay
- Inter-site
2.3 PRECISION

REPEATABILITY
Intra-assay variation (within-run) was calculated as the mean coefficient of variation (% CV) for 7 individual samples, within each of the 9 separate runs during the validation studies. Inter-assay variation (between-run) was calculated as the mean coefficient of variation (% CV), for the same 7 individual samples, between the 9 separate runs during the validation studies. Variation calculations were assessed on linearized values for 90 out of 92 analytes. Assays with values below limit of detection were not reported, see Table 1. Across 90 assays, the mean CV intra-assay and inter-assay variations were observed to be 8% and 15%, respectively. The distribution of both inter-assay and inter-assay variations per assay is shown in Figure 4.

Olink Bioscience
Intra: 8%
Inter: 15%

β 1
Intra 1: 6%
Intra 2: 5%
Inter: 17%

β 2
Intra 1: 9%
Intra 2: 5%
Inter: 13%

Fig 5. Validation of the Proseek Multiplex CVD I 96×96 at 2 (β1-β2) different laboratories. Larger boxes shows intra-assay and inter-assay variations for each site and small boxes represent the inter-site run variations in direct comparison to Olink Bioscience.

REPRODUCIBILITY
Inter-site variation (between-site) was also investigated during the validation in a β-site study, to estimate the expected variations in values between different laboratories, with different operators and using different equipment. Seven individual samples were distributed to each site together with Proseek Multiplex CVD I 96×96 reagent kits. Each site was instructed to perform the analysis of the 7 individual samples according to the same run design. Each site was also asked to perform two independent runs.

The overall design of the β-site study enabled the estimation of both the intra-assay and inter-assay variations for 3 sites including Olink Bioscience, and the inter-site variation for each site, here shown in Figure 5.

The mean % CV value in the first analysis ranged from 6% to 9% intra-assay. The mean % CV ranged from 13% to 17% inter-assay, and 10% to 16% inter-site, here shown in direct comparison to Olink Bioscience in Figure 5.

Overall, the Proseek Multiplex CVD I 96×96 showed very good reproducibility and repeatability with average inter-site variation of 15%.

2.4 ANALYTICAL SPECIFICITY

ENDOGENOUS INTERFERENCE
Endogenous interference from heterophilic antibodies, e.g. HAMA, and rheumatoid factor are known to cause problems in immunoassays. To evaluate the potential impact of this specific interference, a special “mismatch” system was designed. The only way to generate a signal here is by antibody probe pairs being brought into proximity, by cross-binding substances other than antigens, e.g. heterophilic antibodies and similarly acting rheumatoid factor. Two different “mismatched” probe pairs of varying antibody host species origin were designed and evaluated with a Heterophilic Assessment Panel from Scantibodies Laboratory Inc. (part no. 3KG027) and two sets of samples known to contain rheumatoid factor (<20-320 International Units/mL (IU/mL)) and rheumatoid arthritis (375-600 arbitrary units (AU)). No interference could be detected for any of the panel samples, indicating a sufficient blocking ability in all assays in the Proseek Multiplex CVD I 96×96.
Table 2. Performance characteristics. Endogenous interference was performed by addition of hemolysate, lipids and bilirubin in plasma EDTA matrix. Reported are the highest tested concentrations without impact on assay performance.

<table>
<thead>
<tr>
<th>Targets 1-46</th>
<th>Endogenous interference</th>
<th>Targets 47-92</th>
<th>Endogenous interference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g/L Hemolysate mg/mL Lipids µg/mL</td>
<td></td>
<td>g/L Hemolysate mg/mL Lipids µg/mL</td>
</tr>
<tr>
<td>Adrenomedullin</td>
<td>4 20 630</td>
<td>Matrix metalloproteinase-3</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Agusti-related protein</td>
<td>15 20 630</td>
<td>Matrix metalloproteinase-7</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Angiopoietin-1 receptor</td>
<td>15 20 630</td>
<td>Matrix metalloproteinase-10</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Beta-nerve growth factor</td>
<td>15 20 630</td>
<td>Matrix metalloproteinase-12</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Caspase-8</td>
<td>0.23 20 630</td>
<td>Melusin</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Cathepsin D</td>
<td>15 20 630</td>
<td>Membrane-bound aminopeptidase P</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Cathepsin L1</td>
<td>15 20 630</td>
<td>Monocyte chemotactic protein 1</td>
<td>15 20 630</td>
</tr>
<tr>
<td>C-C motif chemokine 3</td>
<td>15 20 630</td>
<td>Myeloperoxidase</td>
<td>0.94 20 630</td>
</tr>
<tr>
<td>C-C motif chemokine 4</td>
<td>15 20 630</td>
<td>Myoglobin</td>
<td>15 20 630</td>
</tr>
<tr>
<td>C-C motif chemokine 20</td>
<td>15 20 315</td>
<td>Natriuretic peptides B</td>
<td>15 20 630</td>
</tr>
<tr>
<td>CD40 ligand</td>
<td>15 20 630</td>
<td>NF-kappa-B essential modulator</td>
<td>0 20 630</td>
</tr>
<tr>
<td>Chitinase-3-like protein 1</td>
<td>15 20 630</td>
<td>N-terminal pro-B-type natriuretic peptide</td>
<td>15 20 630</td>
</tr>
<tr>
<td>C-X-C motif chemokine 1</td>
<td>0.47 20 630</td>
<td>Osteoprotegerin</td>
<td>8 20 630</td>
</tr>
<tr>
<td>C-X-C motif chemokine 6</td>
<td>2 20 630</td>
<td>Ovarian cancer-related tumor marker CA 125</td>
<td>8 20 630</td>
</tr>
<tr>
<td>C-X-C motif chemokine 16</td>
<td>15 20 630</td>
<td>Pappalyisin-1</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Cystatin-B</td>
<td>0 20 630</td>
<td>Pentraxin-related protein PTX3</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Dickkopf-related protein 1</td>
<td>15 20 630</td>
<td>Placenta growth factor</td>
<td>8 20 630</td>
</tr>
<tr>
<td>Endothelial cell-specific molecule 1</td>
<td>15 20 630</td>
<td>Platelet endothelial cell adhesion molecule</td>
<td>8 20 630</td>
</tr>
<tr>
<td>Eosinophil cationic protein</td>
<td>0.47 20 315</td>
<td>Platelet-derived growth factor subunit B</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Epidermal growth factor</td>
<td>15 20 630</td>
<td>Progesterone</td>
<td>15 20 630</td>
</tr>
<tr>
<td>E-selectin</td>
<td>15 20 630</td>
<td>Protein S100-A12</td>
<td>4 20 630</td>
</tr>
<tr>
<td>Fatty acid-binding protein, adipocyte</td>
<td>15 20 630</td>
<td>Proteinase-activated receptor 1</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Fibroblast growth factor 23</td>
<td>15 20 630</td>
<td>Proto-oncogene tyrosine-protein kinase Src</td>
<td>15 20 315</td>
</tr>
<tr>
<td>Follistatin</td>
<td>15 20 630</td>
<td>P-selectin glycoprotein ligand 1</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Fractalkine</td>
<td>4 20 630</td>
<td>Receptor for advanced glycosylation end products</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Gelin 3</td>
<td>15 20 630</td>
<td>Renin</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Galectin-3</td>
<td>0.94 20 630</td>
<td>Resistin</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Growth hormone</td>
<td>15 20 630</td>
<td>SIR2-like protein</td>
<td>0 20 630</td>
</tr>
<tr>
<td>Growth/differentiation factor 15</td>
<td>15 20 630</td>
<td>Spondin-1</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Heat shock 27 kDa protein</td>
<td>0 20 630</td>
<td>ST2 protein</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Heparin-binding EGF-like growth factor</td>
<td>15 20 630</td>
<td>Stem cell factor</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Hepatocyte growth factor</td>
<td>15 20 630</td>
<td>Thrombomodulin</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Interleukin-1 receptor antagonist protein</td>
<td>15 20 630</td>
<td>TIM-1</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Interleukin-4</td>
<td>15 20 630</td>
<td>Tissue factor</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Interleukin-6</td>
<td>15 20 630</td>
<td>Tissue-type plasminogen activator</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Interleukin-6 receptor subunit alpha</td>
<td>15 20 630</td>
<td>TNF-related activation-induced cytokine</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Interleukin-8</td>
<td>8 20 630</td>
<td>TNF-related apoptosis-inducing ligand</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Interleukin-16</td>
<td>4 20 630</td>
<td>TNF-related apoptosis-inducing ligand receptor 2</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Interleukin-18</td>
<td>4 20 630</td>
<td>Tumor necrosis factor receptor 1</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Interleukin-27</td>
<td>8 20 630</td>
<td>Tumor necrosis factor receptor 2</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Kallikrein-11</td>
<td>15 20 630</td>
<td>Tumor necrosis factor receptor superfamily member 5</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Kallikrein-6</td>
<td>15 20 630</td>
<td>Tumor necrosis factor receptor superfamily member 6</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Lectin-like oxidized LDL receptor 1</td>
<td>0.23 20 630</td>
<td>Tumor necrosis factor ligand superfamily member 14</td>
<td>4 20 630</td>
</tr>
<tr>
<td>Leptin</td>
<td>15 20 630</td>
<td>Urokinase plasminogen activator surface receptor</td>
<td>15 20 630</td>
</tr>
<tr>
<td>Macrophage colony-stimulating factor 1</td>
<td>15 20 630</td>
<td>Vascular endothelial growth factor A</td>
<td>8 20 315</td>
</tr>
<tr>
<td>Matrix metalloproteinase-1</td>
<td>15 20 630</td>
<td>Vascular endothelial growth factor D</td>
<td>15g 20 630</td>
</tr>
</tbody>
</table>
The potential impact of certain known interfering serum and plasma components was evaluated by using serial dilutions of bilirubin, hemolysate, and lipids, respectively in EDTA plasma, as shown in Figure 6. These additions represent different patient health conditions and/or sample collection irregularities. No interference was detected by addition of lipids while 2 assays were observed to be affected by bilirubin and 23 assays out 92 were altered by hemolysate.

The latter is probably due to actual analyte leaking out from the disrupted blood cells rather than disturbance of the assay mechanism. Table 2 shows the highest concentrations without impact on assay performance for each component.

2.5 SCALABILITY

Assay performance was further evaluated with regard to scalability, meaning the capability of the Proseek Multiplex technology to maintain the same quality of performance irrespective of multiplex grade. A step-wise increase of multiplex grade (24, 48, 72 and 96) was performed and the observed dCq values for the 24-plex were plotted against the 48-plex, 72-plex and 96-plex for each analyte. The correlation coefficient R^2 value generated by linear regression analysis reflects the correlation between the multiplex assays. The R^2 values were >0.99 for the different multiplex blocks, as shown in Figure 7, demonstrating the scalability of the system.

![Fig 6. Endogenous interference. Levels tested for hemolysate were 0.23-15 g/L hemoglobin, lipids 0.3-20 mg/mL and bilirubin 10-630 µg/mL. The highest hemolysate concentration translates to about 10% hemolysis.]

![Fig 7. Scalability of the Proseek Multiplex technology platform. This experiment was performed using the Proseek Multiplex Oncology I panel. Human serum samples were analyzed with a 24-plex, 48-plex and 72-plex assay and the complete Proseek Multiplex Oncology panel. The observed dCq (log2) values were plotted, and the correlation coefficient R^2 value was generated by linear regression.]
3. References
