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Strategies for design of protein 
biomarker studies
Introduction
Protein biomarker-based studies have great potential to drive the 
development of precision medicine, but in order to maximize their 
impact, aspects such as study design and statistical analysis need 
to be carefully considered. 

The requirements for a proper study design include a well- defined 
study objective, adequate sample size, control of confounding 
factors and biases and appropriate statistical analysis. Moreover, 
application of standardized protocols for sample handling to 
ensure equal sample quality is of the highest importance. Advice on 
sample handling and processing is provided in Olink's white paper 
"Pre-analytical variation in protein biomarker research" (1). 

The study design should consider all procedures involved in 
the study, from initial planning, through sample collection and 
analysis to the final report. If a study is properly designed, any 
factors which distort or bias the results of a test procedure can be 
minimized. This white paper describes important aspects of study 
design to consider when planning your future research.

Planning phase
The planning phase of a study is very important. To have 
confidence in the study results and conclusions, the study 
objectives for a project and other considerations necessary for 
a successful outcome need to be addressed before beginning 
the project. For example, an under-powered study could be a 
waste of limited resources if no firm conclusions could be drawn 
with confidence. 

TERMINOLOGY

In a group comparison, the Power of a study is the probability that 
a true difference in protein levels will be detected as statistically 
significant in a hypothesis test. Power analysis can be used to 
calculate the minimum sample size required to reach a certain 
power. It is always recommended to have as high power as possible, 
but in practice, studies are often designed to have 80% power based 
on assumptions of parameters such as effect size.

All studies will have biases, and researchers should always strive for 
these to be acknowledged and avoided. The design of experiments 
must therefore be thoroughly considered from a statistical 
perspective. It is recommended to have interdisciplinary teams who 
work together designing the study.

Power of a study
To translate an experimental objective into a statistical or analytical 
plan it is important to understand how to derive accurate power 
calculations for the study. Different study questions require 
different statistical methods, and these in turn require different 
sample sizes to detect significant changes. The statistical 
method used may have a very significant effect on the power 
analysis. Without an understanding of the statistical tools best 
suited for a given experiment, it is impossible to carry out an 
appropriate power calculation. A power calculation for many of 
the most commonly used statistical tests can be solved through a 
straightforward equation, see Dell et al. (2), but for more complex 
analyses simulations may be necessary.
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Power analysis
Ideally, power analyses should always be carried out prior to 
running samples and collecting data. A power analysis conducted 
prior to the research study is typically used to determine an 
appropriate sample size to achieve adequate power. Power 
analysis can also be conducted after a study has been completed, 
and such retrospective calculations may be useful when 
designing a scaled-up study from a smaller pilot for example. 

Power calculation can also be used to determine the minimum 
measurable effect size, meaning the quantification of the 
difference between two groups, that is likely to be detectable in a 
study with that sample size. 

Sample size calculations
The goal of performing sample size calculations during the 
planning phase of the study is to ensure that the outcome is 
informative. If the sample size is too small, the probability of 
producing meaningful results is low. On the other hand, using too 
many samples will be unnecessarily costly, time-consuming and 
may be considered unethical.

If an outcome is rare and therefore occurs infrequently, it is 
imperative to increase the sample size in order to detect potential 
differences. It may also be advisable to oversample the rare 
group since power is largely determined by the smallest group in 
the study. A balanced study design between groups is therefore 
recommended. 

Increasing the sample size is like increasing the resolution of 
a picture. With just a few samples, the picture is so fuzzy that 
we would only be able to see differences between the most 
distinct data. However, if the sample size is large, the picture 
becomes sharp enough to determine even very small differences 
between data.

Variables
Power is directly related to spread (standard deviation), effect 
size, sample size and significance level. These variables are 
described below. In general, it is possible to calculate or estimate 
one of these five variables if the others are kept constant. In 
reality, it is common to explore multiple levels of the constant 
variables to see how the target variable (e.g. power) is affected.

IMPORTANT!

All power analyses performed prior to the study are built on 
assumptions of the variables and can only be used as a guide when 
designing a study. These assumptions can come from domain 
knowledge, historical data, literature searches or pilot studies.

Spread
Spread of data, commonly measured as the standard deviation, 
describes how similar observed data points are, and must be 
estimated in order to perform a power calculation. If the standard 
deviation is high for a variable, a larger sample size is needed to 
reach a certain power compared to a variable with low standard 
deviation.

A study may have multiple sources of variation and the spread 
may therefore be hard to estimate. If no good estimate is 
available it may still be worth performing a power analysis with 
both low and high variability levels to see what difference it 
makes to the calculated sample size or power. 

Effect size
An effect size can be standardized and it contains information 
about the variability in the measurements. 

One common way of standardizing the effect size is by dividing 
the observed mean difference by the estimated standard 
deviation, a value called Cohen’s d. If there is no overlap between 
the data in the experimental group and the control group, there 
is a substantial difference, and the effect size is high. But if the 
overlap between the groups is larger than the difference between 
the groups, the effect size is less significant.

Higher effect size

Lower effect size

Fig 1. The higher effect size pulls the two distributions apart and differences 
are easier to detect.

The standardized effect size, Cohen’s d, is the equivalent to a 
Z-score of a standard Normal distribution. For example, an effect 
size of 0.8 means that the score of the average person in the 
experimental group is 0.8 standard deviations above the average 
person in the control group. The power is higher when detecting 
larger effect sizes. Hence, if the effect size is small, a larger 
number of samples are needed to have the power to detect it.
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Sample size
This is the number of samples in each group included in the 
study. It is often the variable we want to estimate, and it is most 
often the only factor the researcher can control to affect the 
power of the study. However, in cases where it is not possible to 
increase the number of samples, a power analysis can be used to 
determine the smallest effect size at which the proposed study 
will have a reasonably high power. Increasing sample size will 
always increase the power of a study.

Significance level
The significance level (often denoted α) is the probability of a 
false positive result. The significance level is commonly set to 
0.05 if one statistical test is carried out. However, Olink’s panels 
each contain 92 assays and one test is commonly applied to each 
assay. This means that the significance level should be adjusted 
accordingly for multiple testing. A common way of doing this is 
by dividing the significance level with the number of tests which 
is called a Bonferroni correction. After correction for 92 test the 
corrected level is around 0.000544.

Each data has an associated probability value called a p-value, 
which is defined as the probablility that a difference is observed 
by chance when no true difference exists given the sampling 
distribution.

If the p-value is less than the significance level after necessary 
correction (p < 0.05), the result is statistically significant. If the 
p-value is greater than the significance level (p > 0.05), the result 
is statistically non-significant. Increasing the significance level will 
increase power, but also increase the probability of detecting a 
difference when there is none. Therefore, increasing the number 
of tests (running more panels) will require running more samples 
to maintain the same level of power.

Of the four variables discussed (spread, effect size, sample size 
and significance level), effect size has by far the biggest influence 
on power, but all should be taken into consideration.

Not the whole story
One major shortcoming of tests of statistical significance is that 
they are blind to the study design. They do not tell the whole 
story. For example, if a treatment group consisted of only men 
over age 70 and the control group consisted of only women under 
age 50, it would be impossible to conclude whether the difference 
in groups was due to age, gender, or the treatment being studied. 
The researcher in this hypothetical study would still be able to 
calculate a p-value, but the result would not be useful. 

Possible confounding factors such as age, gender, other 
underlying diseases, or differences in in sample handling, so 
called pre-analytical variation, need to be considered during the 
planning phase. 

Considerations for different types of 
clinical studies 
There are several distinct types of clinical study recognized, each 
of which has its own benefits and challenges. The scope can 
range from more basic disease vs control comparisons (case-
control studies) to large cohort studies that collect a wealth of 
clinical data and may include a range of clinical end-points. 

Studies can be prospective (where all details such as parameters 
to be measured or clinical interventions to be made are planned 
prior to the start of the study) or retrospective (where material 
from a completed study is examined or re-interrogated after 
the fact). 

If samples are taken from multiple time points from the 
same individuals over the course of a study, it is described as 
longitudinal. We will now consider some aspects of study design 
that relate to the various types of clinical study.

Discovery and validation in cohort studies
Olink's panels are ideal for exploratory screenings of a large 
number of proteins, where the researcher is looking for patterns 
or relative differences between the analytes. 

One example of this broad screening approach is the study 
performed by Bryan et al. where they ran five different Olink 
panels. They found novel proteins that were significantly 
associated with urothelial bladder cancer and possible prognostic 
staging marker candidates (3). 

In clinical settings, cases are typically symptomatic and have 
undergone a variety of procedures leading to the diagnosis. 
Controls can consist of, or include, patients with other diseases, 
and there may be differences in sample collection and processing 
procedures between cases and controls. Depending on the 
sample collection demographics, there may also be a genetic 
bias generated within a specific cohort. All of these factors can 
potentially affect the findings. 

The confidence level in the conclusions from a protein biomarker-
based cohort study can be greatly enhanced by validating 
the findings in a second, independent cohort of samples. In 
one of many such published examples of this multi-cohort 
approach, Tromp et al. identified a number of protein markers 
that distinguish between the two major forms of heart failure. 
The proteins were first identified in a ~1500 sample discovery 
cohort before the findings were confirmed in an independent 
850 sample validation cohort (4).
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Batch-to-batch and run-to-run variation in 
longitudinal studies
In a longitudinal study, variables relating to an individual or 
group of individuals are assessed over a period of time, with 
continuous or repeated monitoring of risk factors and health 
outcomes.

A key consideration is batch-to-batch reproducibility. A change 
of reagent batch may introduce bias between samples run at 
different times. Similarly, even if the same batch is used a bias 
may be introduced between timepoints in the longitudinal study 
if laboratory conditions fluctuate. Therefore, it is common and 
recommended to include bridging samples that are run at every 
timepoint of the longitudinal study. The protein levels measured 
for these samples can be used as a common reference between 
batches and used to normalize and alleviate any potential bias.

TERMINOLOGY

Bridging samples are samples run on plates from the different 
batches. The bridging samples should represent the data set 
in regard to samples and controls. These samples are used for 
reference sample normalization. Olink recommends that at least 
8 different bridging samples are used in such cases.

Make sure to have a sufficient sample supply for bridging 
through the study. Discuss the full study design with your Olink 
representative to ensure that the appropriate numbers of kits and 
bridging samples are included.

In the production of new reagent kits, Olink has QC processes 
to limit variation between batches, and to ensure a consistent 
performance. This is important since a new antibody batch could 
cause a shift in the data generated. To address this potential 
risk, Olink has introduced a thorough QC procedure with strict 
acceptance criteria.

However, when kits are used in longitudinal studies, potential 
signal differences across multiple batches have to be considered 
and adjusted for in the statistical analysis. 

Olink continuously improves products and services. For the latest 
information on panel compositions and updates, contact your 
Olink representative or support@olink.com.

Sample considerations
Before conducting any study using Olink panels there are several 
things to bear in mind.

Samples and controls
Cases and controls within a study should all use the same sample 
matrix to be able to compare data between groups. It is not 
possible to directly compare data between matrices, but it is 
possible for example to determine whether a biomarker found 
in plasma can also be measured in CSF. The inclusion criteria for 
the control group needs to be designed to fit the study questions. 
The control group often consists of samples from healthy 
individuals, but it is not always the best option. For example, in a 
study assessing potential biomarkers for secondary prevention of 
diseases, healthy controls are not a good comparison.

Control group design can be tricky, as was pointed out by Yeh 
et al. They evaluated whether a matched sibling case and control 
study design would yield more statistical power in uncovering 
significant early diagnostic biomarkers for breast cancer. They 
hypothesized that sisters would serve as well-matched controls 
as they are naturally controlled for race, ethnicity and a large 
proportion of genetic background. However, samples from 
biological sisters did not generally appear to be more similar to 
each other than to other individual samples and were not well 
separated (5).

It is important to remember that proper documentation around 
sample handling can provide valuable input when interpreting 
the data. Read more in Olink's white paper "Pre-analytical 
variation in protein biomarker research" (1).

Quality control
Selection of appropriate quality controls must also be addressed. 
For many other multiplex immunoassays, validation steps are 
needed after the runs. To avoid this, Olink has developed a built-
in QC system, using internal controls, for its multiplex biomarker 
panels. This system allows full control over the technical 
performance of assays and samples. 

In addition to the controls provided by Olink, a pooled plasma 
sample or another customized bio matrix pool should be included 
on all plates to enable further QC. An example of additional QC is 
to assess potential variation between runs and plates, for example 
to calculate inter-assay and intra-assay CV. Read more about 
the QC system in the Olink white paper "Data normalization and 
standardization" (6).

mailto:support%40olink.com?subject=
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Consider optimal dilutions
Each Olink panel is optimized for the expected physiological 
and pathological ranges found in plasma and serum for the 
92 biomarker assays included. A few of our panels are designed to 
be run diluted (from 1:10 up to 1:2025) so as to fit the physiological 
ranges within the measurable ranges of our assays, these dilutions 
are a part of the assay and no pre-dilution is necessary.

Dilution factors are set with plasma and serum in mind, so 
when running other sample matrices, these dilutions may need 
adjustment depending on the expected protein concentrations 
in the specific matrix. Guidelines for sample preparation are 
available for a selected number of matrices. Please contact 
support@olink.com for further information. 

When samples are to be sent to Olink Analysis Service, the 
requested dilution step of the samples will be performed in-house 
before the analysis. 

For tissue or cell lysate, we recommend a range from 0.5–1.0 µg/µL  
of total protein concentration determined by, for example, BCA 
or Bradford. Cells can also be sent with a concentration indicated 
as cells/µL. To ensure that the proteins are measured in the 
optimal range for each assay, it is recommended to run samples 
in at least two different starting concentrations, (i.e. dilutions). 
It is important that all tissue or cell lysate samples that are to 
be analyzed together have the same starting concentration of 
proteins or cells. 

Range of detection
The analytical measuring range needs to be determined to 
characterize the performance of the test. To understand the 
capabilities and limitations of Olink panels, the lower limit of 
quantification (LLOQ) and the upper limit of quantification 
(ULOQ) is listed for each assay in the validation data document 
for each panel. Use this information to ensure that the panel is fit 
for the specific purpose.

Protein concentration (pg/mL)
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Fig 2. Example diagram of dynamic range with highlighted normal plasma levels.

Data sharing and comparing
Share data
One way to drive further improvement in the proteomics field's 
use of statistics is continued growth in open data sharing. Many 
research questions are addressed by multiple teams, and it may 
be misleading to emphasize the statistically significant findings of 
one single team. 

There are several collaborative frameworks set up to share 
Olink data. For example, SCALLOP (www.olink.com/scallop) is a 
consortium for discovery and follow-up of genetic associations 
with proteins (pQTLs) on the Olink Proteomics platform (7). 

To be a member of the SCALLOP consortium you have to be 
the principle investigator of a study collection with Olink and 
genome-wide genotyping data. 

In a major study by Folkersen et al, it was recommended that 
a large sample size is needed to detect these genetic protein 
associations (8), and this shows why collaborative working 
environments are of increasing importance.

Compare NPX values and combine studies
To compare NPX values between studies it is important to 
remember that the studies need to be normalized to remove any 
bias between them. If the studies can be considered randomized 
or if the factors that differ between the studies are not important, 
median centering intensity normalization can be utilized. 
Otherwise, bridging samples should be used for normalization 
analogous to when combining data from timepoints in a 
longitudinal study described above. If possible, these bridging 
reference samples should be representative for the study, for 
example include all study groups, and should be matrix matched 
with other samples.

For more information see our white paper, “Data normalization 
and standardization“ (6).

mailto:support%40olink.com?subject=
http://www.olink.com/scallop


Maximize information output
In general there will normally be a requirement that key findings 
with clinical implications should be independently verified with 
another technique, irrespective of the original method used. If 
you need to do that with your important Olink findings, it is a 
good option to run a singleplex assay. 

There are numerous examples showing how assays run in our 
92‑plex panels correlate very well with standard single ELISAs, 
and show equal or better performance (9).
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Fig 3. Correlation between conventional ELISA and Olink for CXCL-10.

Good correleation in plasma has also been shown when comparing 
an Olink assay with the equivalent SIMOA assay from Quanterix. 

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30

Olink assay (linear NPX)

Q
ua

nt
er

ix
 a

ss
ay

 (p
g/

m
l)

R2 = 0.9417

Fig 4. Correlation between Olink and SIMOA for NFL. Samples were supplied 
by courtecy of Prof. Tomas Olsson (KI, Sweden). The assay for Neurofilament 
light polypeptide uses the NF-light® antibodies from UmanDiagnostics, 
Umeå Sweden.
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How Olink can help
As a service, Olink's data science team offers to discuss 
normalization approaches and study design before analysis 
starts, to help you get the most out of your experiment.They can 
also assist with customized statistical analysis and maximize 
the value and information output from your studies run using 
Olink panels.
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