Protein deglycase DJ-1 (PARK7)

Links to databases

Protein deglycase that repairs methylglyoxal- and glyoxal-glycated amino acids and proteins, and releases repaired proteins and lactate or glycolate, respectively. Deglycates cysteines, arginines and lysines residues in proteins, and thus reactivates these proteins by reversing glycation by glyoxals. Acts on early glycation intermediates (hemithioacetals and aminocarbinols), preventing the formation of advanced glycation endproducts (AGE) (PubMed:25416785). Plays an important role in cell protection against oxidative stress and cell death acting as oxidative stress sensor and redox-sensitive chaperone and protease; functions probably related to its primary function (PubMed:17015834, PubMed:20304780, PubMed:18711745, PubMed:12796482, PubMed:19229105, PubMed:25416785). It is involved in neuroprotective mechanisms like the stabilization of NFE2L2 and PINK1 proteins, male fertility as a positive regulator of androgen signaling pathway as well as cell growth and transformation through, for instance, the modulation of NF-kappa-B signaling pathway (PubMed:12612053, PubMed:15502874, PubMed:14749723, PubMed:17015834, PubMed:21097510, PubMed:18711745). Its involvement in protein repair could also explain other unrelated functions. Eliminates hydrogen peroxide and protects cells against hydrogen peroxide-induced cell death (PubMed:16390825). Required for correct mitochondrial morphology and function as well as for autophagy of dysfunctional mitochondria (PubMed:19229105, PubMed:16632486). Plays a role in regulating expression or stability of the mitochondrial uncoupling proteins SLC25A14 and SLC25A27 in dopaminergic neurons of the substantia nigra pars compacta and attenuates the oxidative stress induced by calcium entry into the neurons via L-type channels during pacemaking (PubMed:18711745). Regulates astrocyte inflammatory responses, may modulate lipid rafts-dependent endocytosis in astrocytes and neuronal cells (PubMed:23847046). Binds to a number of mRNAs containing multiple copies of GG or CC motifs and partially inhibits their translation but dissociates following oxidative stress (PubMed:18626009). Metal-binding protein able to bind copper as well as toxic mercury ions, enhances the cell protection mechanism against induced metal toxicity (PubMed:23792957).

Sample type

Recommended sample types are human EDTA plasma and serum. A range of additional sample types are compatible with the technology (PEA), including citrate plasma, heparin plasma, cerebrospinal fluid, (CSF), tissue and cell lysates, fine needle biopsis, microdialysis fluid, cell culture media, dried blood spots, synovial fluid, saliva, plaque extract and microvesicles. Please note that protein expression levels are expected to vary in different sample types. Certain assays are differentially affected by interfering substances such as hemolysate. Download any of our Data Validation documents or contact support@olink.com for more information.

NOTE: The calibrator curve below shows the performance of the assay with the estimated sensitivity and dynamic range parameters indicated. These curves are generated during the assay validation process using recombinant antigens. Please note that when analyzing biological samples the data generated will be given in the form of relative quantification (NPX values) and cannot be converted to absolute protein concentrations. For more info about NPX measurements, please visit our FAQ page.

Analytical Measuring Range

Please note: the technical data reported below refers to the measured value in the in vitro validation assays. Since the Development panel uses human samples diluted 100-fold, a multiplication factor of 100 should be applied when comparing the addressable biological concentration to this validation data.

    • LOD (pg/mL)
    • 7.6
    • LLOQ (pg/mL)
    • 7.6
    • ULOQ (pg/mL)
    • 15625
    • Hook (pg/mL)
    • 250000
    • Range (logs)
    • 3.3

Calibrator curve for validation data (generated in multiplex)

Protein deglycase DJ-1 (PARK7)

Precision

    • Within run precision Coefficient of Variation (CV)
    • 10%
    • Between run precision Coefficient of Variation (CV)
    • 9%

Precision (repeatability) is calculated from linearized NPX values over LOD.

Biomarker Validation Data

Additional validation data, as well as a more detailed description of how the Olink panels are quality controlled can be found in our Data Validation documents. To download or to learn more go to the Data Validation page.

View all Development panel biomarkers >

View all biomarkers >