Fructose-2,6-bisphosphatase TIGAR (TIGAR)

Links to databases

Fructose-bisphosphatase hydrolyzing fructose-2,6-bisphosphate as well as fructose-1,6-bisphosphate (PubMed:19015259). Acts as a negative regulator of glycolysis by lowering intracellular levels of fructose-2,6-bisphosphate in a p53/TP53-dependent manner, resulting in the pentose phosphate pathway (PPP) activation and NADPH production (PubMed:16839880, PubMed:22887998). Contributes to the generation of reduced glutathione to cause a decrease in intracellular reactive oxygen species (ROS) content, correlating with its ability to protect cells from oxidative or metabolic stress-induced cell death (PubMed:16839880, PubMed:19713938, PubMed:23726973, PubMed:22887998, PubMed:23817040). Plays a role in promoting protection against cell death during hypoxia by decreasing mitochondria ROS levels in a HK2-dependent manner through a mechanism that is independent of its fructose-bisphosphatase activity (PubMed:23185017). In response to cardiac damage stress, mediates p53-induced inhibition of myocyte mitophagy through ROS levels reduction and the subsequent inactivation of BNIP3. Reduced mitophagy results in an enhanced apoptotic myocyte cell death, and exacerbates cardiac damage (By similarity). Plays a role in adult intestinal regeneration; contributes to the growth, proliferation and survival of intestinal crypts following tissue ablation (PubMed:23726973). Plays a neuroprotective role against ischemic brain damage by enhancing PPP flux and preserving mitochondria functions (By similarity). Protects glioma cells from hypoxia- and ROS-induced cell death by inhibiting glycolysis and activating mitochondrial energy metabolism and oxygen consumption in a TKTL1-dependent and p53/TP53-independent manner (PubMed:22887998). Plays a role in cancer cell survival by promoting DNA repair through activating PPP flux in a CDK5-ATM-dependent signaling pathway during hypoxia and/or genome stress-induced DNA damage responses (PubMed:25928429). Involved in intestinal tumor progression (PubMed:23726973).

Sample type

Recommended sample types are human EDTA plasma and serum. A range of additional sample types are compatible with the technology (PEA), including citrate plasma, heparin plasma, cerebrospinal fluid, (CSF), tissue and cell lysates, fine needle biopsis, microdialysis fluid, cell culture media, dried blood spots, synovial fluid, saliva, plaque extract and microvesicles. Please note that protein expression levels are expected to vary in different sample types. Certain assays are differentially affected by interfering substances such as hemolysate. Download any of our Data Validation documents or contact support@olink.com for more information.

NOTE: The calibrator curve below shows the performance of the assay with the estimated sensitivity and dynamic range parameters indicated. These curves are generated during the assay validation process using recombinant antigens. Please note that when analyzing biological samples the data generated will be given in the form of relative quantification (NPX values) and cannot be converted to absolute protein concentrations. For more info about NPX measurements, please visit our FAQ page.

Analytical Measuring Range

    • LOD (pg/mL)
    • 31
    • LLOQ (pg/mL)
    • 31
    • ULOQ (pg/mL)
    • 250000
    • Hook (pg/mL)
    • 250000
    • Range (logs)
    • 3.9

Calibrator curve for validation data (generated in multiplex)

Fructose-2,6-bisphosphatase TIGAR (TIGAR)

Precision

    • Within run precision Coefficient of Variation (CV)
    • 5%
    • Between run precision Coefficient of Variation (CV)
    • 21%

Precision (repeatability) is calculated from linearized NPX values over LOD.

Biomarker Validation Data

Additional validation data, as well as a more detailed description of how the Olink panels are quality controlled can be found in our Data Validation documents. To download or to learn more go to the Data Validation page.

View all Organ Damage panel biomarkers >

View all biomarkers >